JOM 23791

XXXI *. Heterobimetallische Zweikern-Komplexe durch Addition von $Cp(CO)_3MH$ (M = Mo, W) an $Ir(CH_3)(CO)(PPh_3)_2$

Lutz Dahlenburg, Eva Halsch, Alexander Wolski und Matthias Moll

Institut für Anorganische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen (Deutschland) (Eingegangen den 7. April 1993)

Abstract

Treatment of $Ir(CH_3)(CO)(PPh_3)_2$ with molybdenum or tungsten hydrides $Cp(CO)_3MH$ results in elimination of both CH_4 and CO to give heterobimetallic products of composition $Cp(CO)M(\mu-CO)_2Ir(PPh_3)_2$ (1: M = Mo; 2: M = W). Degradation of these complexes in solution occurs by CO transfer and oxidative P-C addition, affording the phosphido-bridged derivatives $Cp(CO)_2$ - $M(\mu-Ph_2P)Ir(C_6H_5)(CO)_2(PPh_3)$ (3: M = Mo; 4: M = W) as the ultimately stable compounds. The structures of 1 and 2, determined by X-ray crystallography, comprise $Cp(CO)_3M$ groups attached to the $Ir(PPh_3)_2$ moiety by short metal-metal bonds (Mo-Ir 2.579(1), W-Ir 2.583(1) Å) and two asymmetric CO bridges.

Zusammenfassung

Die Reaktion zwischen Ir(CH₃)(CO)(PPh₃)₂ und den Molyb<u>dän oder</u> Wolframhydriden Cp(CO)₃MH ergibt unter Eliminerung von CH₄ und CO die heterobimetallischen Produkte Cp(CO) $\overline{M(\mu-CO)_2}$ Ir(PPh₃)₂ (1: M = Mo; 2: M = W). In Lösung werden diese durch CO-Übertragung und oxidative P-C-Addition zu den phosphido-verbrückten Derivaten Cp(CO)₂ $\overline{M(\mu-Ph_2P)}$ Ir-(C₆H₅)(CO)₂(PPh₃) (3: M = Mo; 4: M = W) als letztendlich stabilen Verbindungen abgebaut. Die röntgenographisch ermittelten Strukturen von 1 und 2 enthalten Cp(CO)₃M-Bausteine, die über kurze Metall-Metall-Bindungen (Mo-Ir 2.579(1), W-Ir 2.583(1) Å) und zwei asymmetrische CO-Brücken an das Ir(PPh₃)₂-Fragment geknüpft sind.

1. Einführung

Die Fülle oxidativer Additionsreaktionen, die metallbasische Komplexe des *d*-Blocks mit Element-Wasserstoff-Verbindungen eingehen, welche so unterschiedlich polare E-H-Bindungen wie etwa H-H, B-H, C-H, Si-H, P-H oder S-H einerseits und X-H (X = Halogen), N-H oder O-H andererseits enthalten, ist hinreichend dokumentiert [2,3]. Dagegen liegen über entsprechende Reaktionen der Übergangsmetall-Wasserstoff-Bindung bislang nur fragmentarische Kenntnisse vor [4a,4d,5,6]. Wir haben daher begonnen, solche Prozesse systematisch zu studieren und berichten hier über Ergebnisse, welche wir bei der Untersuchung des Reaktionsverhaltens der relativ M-Haciden [7] Molybdän- und Wolframverbindungen Cp (CO)₃MoH ($pK_a(CH_3CN) = 13.9$) und Cp(CO)₃WH ($pK_a(CH_3CN) = 16.1$) mit Irdiumkomplexen des Vaska-Typs erzielten.

2. Ergebnisse

2.1. Präparative und spektroskopische Befunde

Der Chloroiridium-Komplex $IrCl(CO)(PPh_3)_2$ ließ sich mit den Hydridoverbindungen $Cp(CO)_3MH$ (M = Mo, W) in THF weder bei Raumtemperatur noch bei 65°C zur Reaktion bringen. Aus Ansätzen in siedendem Toluol wurden neben den unveränderten Ausgangskomplexen lediglich geringe Mengen der zweiker-

Correspondence to: Professor Dr. L. Dahlenburg.

^{*} XXX. Mitteilung siehe Lit. 1.

nigen Spezies $Cp_2M_2(CO)_6$ (M = W) sowie des sich in Gegenwart eingeschleppter O₂-Spuren in Lösung sehr leicht bildenden Disauerstoff-Adduktes IrCl(O₂)(CO)-(PPh₃)₂ isoliert.

Dagegen setzen sich die beiden Hydridokomplexe mit dem von uns schon vor längerer Zeit synthetisierten Methylderivat Ir(CH₃)(CO)(PPh₃)₂ [8] in glatter Reaktion zu Mo-Ir- und W-Ir-verknüpften heterobimetallischen Produkten um: Mit Cp(CO)₃MoH entsteht in THF bei Raumtemperatur unter Gasentwicklung Cp(CO)Mo(μ -CO)₂Ir(PPh₃)₂ (1) welches nach 30 min in Ausbeuten zwischen 20 und 30% isoliert werden kann; Cp(CO)₃WH reagiert langsamer und liefert nach Reaktionszeiten von 12-24 h mit Ausbeuten bis zu 50% das zu 1 homologe Produkt, Cp(CO)W(μ - \overline{CO})₂Ir(PPh₃)₂ (2) (GI. (1)).

$$Cp(CO)_{3}MH + Ir(CH_{3})(CO)(PPh_{3})_{2} \longrightarrow$$

$$Cp(CO)\overline{M(\mu-CO)_{2}}Ir(PPh_{3})_{2} + CO + CH_{4} \quad (1)$$

$$(1: M = Mo; 2: M = W)$$

Die Verbindungen 1 und 2 werden als dunkelbraune Feststoffe erhalten, die in CH₂Cl₂ und CHCl₃ gut löslich, gegen Halogenierungsreaktionen aber nur begrenzt stabil sind. In Benzol, Toluol und THF lösen sich beide Komplexe mäßig, sind darin aber gleichfalls nicht dauerhaft haltbar (vgl. 2.3.); in Aceton ist ihre Löslichkeit gering; in gesättigten Kohlenwasserstoffen sind sie nicht mehr löslich. Während sich Lösungen von 1 und 2 als stark luftempfindlich erwiesen, konnten kristalline Proben an Luft unzersetzt gehandhabt werden. Folgende spektroskopische Daten sind charakteristisch: 1; IR(KBr): 1719sst, 1750st und 1868sst cm⁻¹; IR (CH₂Cl₂): 1735sst,br und 1890st,br cm⁻¹; ¹H-NMR $(CDCl_3)$: $\delta(Cp) = 5.2$ (s). 2; IR (KBr): 1717sst, 1752st und 1875sst cm⁻¹; IR (CH₂Cl₂): 1710sst,br und 1870st,br cm⁻¹; ¹H-NMR (CD₂Cl₂): δ (Cp) = 5.3 (s); ³¹P-NMR (CD₂Cl₂): $\delta = 28.10$ (s).

2.2. Röntgenstrukturanalysen

Die gemäß Gl. (1) gebildeten Produkte gehören zu einer im Verlauf der letzten Jahre bekannt gewordenen, recht umfangreichen Familie heterobimetallischer Molybdän- und Wolframkomplexe $Cp(CO)M(\mu-CO)_2M'L_2$, in denen der Baustein M'L_2 bislang durch die Fragmente Rh(PPh_3)_2 [9a,9c,9e,9f,10], Ni(PPh_3)_2 [9d,9e] und Cu(PPh_3)_2 [9b,9c,9e] belegt ist. Die in diesem Zusammenhang unmittelbar interessierenden homologen Rhodiumverbindungen $Cp(CO)Mo(\mu-CO)_2Rh(PPh_3)_2$ und $Cp(CO)W(\mu-CO)_2Rh(PPh_3)_2$ wurden durch Salzeliminerung zwischen RhCl(PPh_3)_3 und den Carbonylmetallaten Na[Cp(CO)_3M] (M = Mo, W) erhalten [9a,9c]. Das heterobimetallische W-Rh-Derivat entstand anstelle erwarteter alkylidenverbrückter Zweikern-Verbindungen auch bei Versuchen, die Rh-H-Bindung von RhH(L)(PPh_3)_2 (L = CO, PPh_3) an das Carbin-Fragment von Cp(CO)_2W= CMe zu addieren [10].

In der Reihe der bislang bekannten heterobimetallischen Komplexe Cp(CO) $M(\mu$ -CO)₂M'(PPh₃)₂ sind die Derivate 1 und 2 mit ihren Mo-Rh-, W-Rh-, W-Ni- und W-Cu-verknüpften Analoga kristallchemisch isotyp; sie besitzen bei gleicher Raumgruppe ähnliche Gitterabmessungen (Tab. 1). Ausgewählte interatomare Abstände und Bindungswinkel von 1 und 2 sind in Tabelle 2 zusammengestellt. Abbildung 1 und Abb. 2 zeigen die jeweiligen Molekülmodelle.

Beiden Molekülen liegen "butterfly"-artige M(μ -CO), Ir-Gerüste mit Metall-Metall-Bindungen (s.u.) und asymmetrischen CO-Brücken zugrunde. Die Winkel Ir-C(1)-O(1), Ir-C(2)-O(2), Mo(W)-C(1)-O(1) und Mo(W)-C(2)-O(2) (Tab. 2) zeigen, daß die verbrückenden Carbonyl-Gruppen vergleichsweise wenig von ihrer ursprünglich linearen Anbunding an das Molybdän- oder Wolframatom abweichen. Der Interplanar-Winkel zwischen den im Molekül 1 durch die Atome Mo, C(1) und Ir sowie Mo, C(2) und Ir aufgespannten Ebenen beträgt 161.2(5)°; für 2 liegt der entsprechende Diederwinkel bei 161.4(8)°. Eine ganz ähnliche Faltung der bimetallischen zweifach COverbrückten Grundgerüste wurde auch an den homologen Mo-Rh- und W-Rh-Derivaten $Cp(CO)M(\mu$ -CO)₂Rh(PPh₃)₂ gefunden [9c,10]. Längs ihrer durch die Kohlenstoffatome der CO-Brücken festgelegten Achsen sind die $M(\mu$ -CO)₂Ir-Struktureinheiten von 1 und 2 um 156.8(4) bzw. 157.1(7)° gefaltet. Die Koordi-

TABELLE 1. Kristallographische Daten isotyper Komplexe des Typs $Cp(CO)\dot{M}(\mu-CO)_2\dot{M}'(PPh_3)_2$ (jeweils Raumgruppe $P2_1/c$ mit Z = 4)

M	Μ'	a (Å)	b (Å)	c (Å)	β (°)	V (Å ³)		
Мо	Rh	18.102(2)	10.407(1)	20.736(2)	104.99(1)	3773.4	[9c]	-
Мо	Ir	18.006(1)	10.421(1)	20.786(1)	104.64(1)	3773.6	1	
W	Rh	17.997(8)	10.420(3)	20.980(9)	104.19(3)	3801	[10]	
W	Ir	17.960(1)	10.405(2)	20.808(6)	104.63(1)	3762.4	2	
W	Ni	17.873(9)	10.156(6)	21.249(7)	105.05(3)	3725	[9e]	
W	Cu	17.991(3)	10.098(2)	21.608(2)	105.66(1)	3779.7	[9c]	

TABELLE 2. Ausgewählte Bindungslängen (Å) und -winkel (°) von 1 und 2

1		2	
Ir-Mo	2.579(1)	Ir-W	2.583(1)
Ir-P(1)	2.297(2)	Ir- P (1)	2.288(4)
Ir-P(2)	2.244(2)	Ir-P(2)	2.233(4)
Ir-C(1)	2.095(8)	Ir-C(1)	2.088(15)
Ir-C(2)	2.165(9)	Ir-C(2)	2.160(15)
Mo-C(1)	2.020(8)	W-C(1)	2.008(14)
Mo-C(2)	1.981(10)	W-C(2)	1.986(16)
Mo-C(3)	1.879(11)	W-C(3)	1.829(18)
Mo-Cp ^a	2.008	W-Cp ^a	2.006
C(1)-O(1)	1.173(10)	C(1)-O(1)	1.20(2)
C(2)-O(2)	1.176(12)	C(2)-O(2)	1.22(2)
C(3)-O(3)	1.184(13)	C(3)-O(3)	1.25(2)
P(1)-Ir-P(2)	102.6(1)	P(1)-Ir-P(2)	102.7(1)
Mo-Ir-P(1)	135.0(1)	W-Ir-P(1)	134.8(1)
Mo-Ir-P(2)	122.4(1)	W-Ir-P(2)	122.5(1)
C(1) - Ir - P(1)	119.3(3)	C(1)-Ir- $P(1)$	118.9(5)
C(2)-Ir-P(1)	127.5(3)	C(2) - Ir - P(1)	127.8(5)
C(1)-Ir-P(2)	107.2(3)	C(1)–Ir– $P(2)$	108.1(5)
C(2)-Ir-P(2)	101.4(3)	C(2)-Ir- $P(2)$	100.9(4)
C(1)-Ir- $C(2)$	96.5(3)	C(1)-Ir- $C(2)$	96.3(6)
Ir-Mo-C(3)	79.2(3)	Ir-W-C(3)	82.3(5)
C(1)-Mo-C(2)	105.2(3)	C(1)-W-C(2)	104.8(6)
C(1)-Mo-C(3)	94.2(4)	C(1)-W-C(3)	94.9(7)
C(2)-Mo-C(3)	87.7(4)	C(2) - W - C(3)	90.7(7)
Ir-Mo-Cp ^a	161.3	Ir–W–Cp ^a	160.4
C(1)-Mo-Cp ^a	121.0	C(1)-W-Cp ^a	120.7
C(2)-Mo-Cp ^a	121.7	C(2)-W-Cp ^a	121.7
C(3)–Mo–Cp ^a	119.5	C(3)–W–Cp ^a	117.3
Ir-C(1)-Mo	77.6(3)	Ir-C(1)-W	78.2(5)
Ir-C(1)-O(1)	123.5(6)	Ir-C(1)-O(1)	123.0(10)
Mo-C(1)-O(1)	158.7(7)	W-C(1)-O(1)	158.7(12)
Ir-C(2)-Mo	76.8(3)	W-C(2)-Ir	77.0(6)
Ir - C(2) - O(2)	120.1(6)	Ir - C(2) - O(2)	120.7(11)
Mo-C(2)-O(2)	163.1(7)	W-C(2)-O(2)	162.3(12)
Mo-C(3)-O(3)	170.9(8)	W-C(3)-O(3)	174.1(12)

^a "Cp": Schwerpunkt der Fünfring-Kohlenstoffatome.

Abb. 1. Molekülmodell von Cp(CO) $Mo(\mu$ -CO)₂Ir(PPh₃)₂ (1).

Abb. 2. Molekülmodell von $Cp(CO)\overline{W(\mu-CO)_2}Ir(PPh_3)_2$ (2).

nationsebene "P(1), Ir, P(2)" steht mit $85.0(3)^{\circ}$ (Komplex 1) bzw. $84.2(4)^{\circ}$ (Komplex 2) zu der durch das Ir-Atom und die Kohlenstoffatome C(1) und C(2) definierten Ebene weitgehend senkrecht *. Gleiches gilt für die Ausrichtung der durch die Schwerpunkte der C₅H₅-Ringe, durch das Mo- bzw. W-Atom sowie durch das Atom C(3) des terminalen CO-Liganden festgelegten Ebene relativ zu den Ebenen "C(1), Mo, C(2)" (94.0(4)°) bzw. "C(1), W, C(2)" (92.5(7)°).

Für CO-verbrückte Mo-Ir-Bindungen des formalen Bindungsgrades Eins wurden bislang Metall-Metall-Abstände von 2.835(2) und 2.841(2) Å gemessen; ohne gleichzeitige Gegenwart eines Brückenliganden strecken sich solche Bindungslängen auf 2.902(2) Å [4d]. Vergleichbare W-Ir-Einfachbindungsabstände bewegen sich zwischen 2.781(1) und 2.867(1) Å für nicht überbrückte Bindungen [4b,4c,12,13]; bei zusätzlicher Verbrückung können sich die beiden Atome auf Entfernungen von 2.665(2) [14] bis 2.698(1) Å [12] annähern. Demgenüber sind die in 1 und 2 vorliegenden Metall-Metall-Bindungen mit Längen von 2.579(1) Å für Mo-Ir und 2.583(1) Å für W-Ir dramatisch verkürzt; es handelt sich bei ihnen um die kürzesten Abstände, die zwischen diesen Metallatomen bislang überhaupt gemessen wurden. Die Kürze dieser Bindungen ist allerdings nicht unerwartet, da in den

^{*} Diese Orientierung des Ir(PPh₃)₂-Bausteins relativ zu den Cp(CO)M(CO)₂-Fragmenten im Kristall einerseits und die an Lösungen von 2 NMR-spektroskopisch zutage tretende Isochronie der beiden Phosphorkerne andererseits sind nur bei Annahme gerüstflexibler Moleküle (vgl. [9f]) miteinander vereinbar. Über entsprechende Untersuchungen zur inneren Dynamik und auch zur Reaktivität von 2, die Gegenstand aktueller Arbeiten sind [11], wird gesondert berichtet.

Komplexen 1 und 2 die d^6 -Donatoren [Cp-(CO)₃M]⁻ den Bedarf des Vierelektronen- σ,π -Akzeptors [Ir-(PPh₃)₂]⁺ über die Carbonyl-C-Atome und das Molybdän- bzw. Wolframzentrum im Sinne der Ausbildung formaler Doppelbindungen befriedigen können [15]. Dies zeigen auch die an den Rh-Homologen von 1 und 2 gemessenen Mo-Rh- und W-Rh-Abstände, die mit 2.588(1) Å [9c] bzw. 2.587(1) Å [10] gleichfalls bemerkenswert kurz ausfallen, sowie die Ergebnisse einer EHMO-Analyse des Modell-Komplexes Cp(CO)-Mo(μ -CO)₂Rh(PH₃)₂ [9e].

2.3. Folgeprodukte

Wie bereits erwähnt (s. 2.1.), sind Lösungen von 1 und 2 auch in weitgehend inerten Solvenzien wie Toluol oder THF nicht unbegrenzt stabil. So schied sich bei Raumtemperatur aus Lösungen des Mo-Ir-Komplexes 1 in THF innerhalb eines Tages ein oranges Folgeprodukt ab, welches mit wechselnden Mengen THF behaftet war, durch Vergleich seiner spektroskopischen Eigenschaften mit denen des (di-p-tolyl)phosphidoverbrückten Mo-Ir-Komplexes $Cp(CO)_2Mo(\mu-Ar_2-$ P) $Ir(Ar)(CO)_2(PAr_3)$ (Ar = C₆H₄Me-4) [6] aber sicher als $Cp(CO)_2Mo(\mu-Ph_2P)Ir(C_6H_5)(CO)_2(PPh_3)$ (3) zu identifizieren war. 3; IR (KBr): 1805sst, 1890sst, 1960sst und 2020schw cm⁻¹; IR (THF): 1820st, 1902sst, 1975sst und 2035schw cm⁻¹; ¹H-NMR (C₆D₆): δ (Cp) = 4.8 (s); ³¹P-NMR (C_6D_6): $\delta(PPh_3) = -4.45$, $\delta(\mu PPH_2$ = 89.93 (je d; J(PP) = 19.5 Hz); ¹³C-NMR $(C_6 D_6)$: $\delta(Cp) = 91.1$ (s), $\delta(Ir-C_{Ph}) = 141.1$ (dd; J(PC)= 28.2 und 66.7 Hz); δ (Ir-CO) = 181.3 (virt.t; N = 16.2 Hz) und 182.9 (m); δ (Mo-CO) = 240.7 (s) und 243.0 (d; J(PC) = 29.0 Hz).

Der Abbau des gelösten W-Ir-Komplexes 2 erfolgt sehr viel langsamer und ergibt erst nach etwa einer Woche bei Raumtemperatur das Folgeprodukt Cp-(CO)₂W(μ -Ph₂P)Ir(C₆H₅)(CO)₂(PPh₃) (4), allerdings selbst dann stets im Gemisch mit größeren Mengen der ursprünglichen Verbindung Cp(CO)W(μ -CO)₂Ir-(PPh₃)₂. Spektroskopische Daten von 4; IR (KBr): 1795sst, 1885sst, 1960sst und 2019schw cm⁻¹; IR (THF): 1805m, 1892st und 1970st cm⁻¹; ¹H-NMR (C₆D₆): δ (Cp) = 4.9 (s); ³¹P-NMR (C₆D₆): δ (PPh₃) = -16.00 (d; J(PP) = 21.9 Hz), δ (μ -PPh₂) = 54.02 (d mit ¹⁸³W-Satelliten; J(WP) = 264 Hz).

3. Diskussion

Die Umsetzung von $Ir(CH_3)(CO)(PPh_3)_2$ mit den Hydridomolybdän- und wolframkomplexen $Cp(CO)_3$ -MH führt zu heterobimetallischen Derivaten der Zusammensetzung $Cp(CO)M(\mu-CO)_2Ir(PPh_3)_2$ (1: M = Mo; 2: M = W) als ersten isolierbaren Produkten, welche in Lösung unter CO-Übertragung und oxidativer P-C-Spaltung mit unterschiedlicher Geschwindigkeit $(1 \gg 2)$ zu stabileren Folgeprodukten des Typs $Cp(CO)_{2}M(\mu-Ph_{2}P)Ir(C_{6}H_{5})(CO)_{2}(PPh_{3})$ (3: M = Mo; 4: M = W) abreagieren. Während unserer laufenden Untersuchungen war von anderer Seite [6] berichtet worden, daß im eng verwandten Reaktionssystem $Cp(CO)_{3}MH/Ir(CH_{3})(CO)[P(C_{6}H_{4}Me-4)_{3}]_{2}/Toluol$ die zu 3 und 4 analogen phosphido-verbrückten bimetallischen Komplexe $Cp(CO)_2M(\mu-Ar_2P)Ir(Ar)(CO)_2$ -(PAr₃) (Ar = C_6H_4 Me-4) ohne weitere isolierbare Zwischenprodukte direkt entstehen. Als Weg zu diesen Verbindungen wurde eine Umlagerung vermuteter instabiler Primärprodukte mit 16e-konfiguriertem Iridium, $Cp(CO)_3M-Ir(CO)(PAr_3)_2$, in die wegen ihrer 18e-Konfiguration an jedem der beiden Metallzentren günstigeren Aryl(µ-phosphido)-Komplexe angenommen [6]. Unserer Resultate zeigen demgegenüber, daß Verbindungen des Typs Cp(CO)₃M-Ir(CO)(PAr₃)₂, die zweifelsohne gedanklich plausible Zwischenstufen repräsentieren, für die Bildung der beobachteten Endprodukte nicht notwendigerweise eine Rolle spielen. In diesem Zusammenhang ist auch bemerkenswert, daß die Addition von CO an den W-Rh-Komplex Cp(CO)- $\overline{W(\mu-CO)_2}Rh(PPh_3)_2$ (über $Cp(CO)_3-W-Rh(CO)$ -(PPh₃)₂?) zur Spaltung der Wolfram-Rhodium-Bindung, nicht aber zu Cp(CO)₂ $\dot{W}(\mu$ -Ph₂P)Rh(C₆H₅)- $(CO)_2(PPh_3)$ führt [9e].

Zweikernige $M(\mu$ -CO)₂Ir-Grundgerüste mit außerordentlich kurzen Metall-Metall-Bindungen sind das hervorstechende strukturchemische Merkmal der Verbindungen 1 und 2. Offensichtlich wird der bimetallische oder mehrkernige Aufbau von Komplexen der Bruttozusammensetzung $[Cp(CO)_3MIrL_2]_n$ mit M =Mo oder W in hohem Maße von der Art der Liganden L am Iridiumatom mitbestimmt: während für L = PPh₃ (Verbindungen 1 und 2) der Aggregationsgrad n = 1beobachtet wird, weist der mit 2 isoelektronische Cluster $[Cp(CO)_3WIr(CO)_2]_n$ entsprechend n = 2 ein tetrametallisch-tetraedrisches W_2Ir_2 -Grundgerüst auf [4a,4c].

4. Experimentelles

Alle Arbeiten wurden unter Ausschluß von Luft in trockenen Lösemitteln durchgeführt. Die IR-Spektren wurden auf Gitterspektrometern der Fabrikate Perkin-Elmer 580 B und Zeiss IMR 16 aufgenommen. Für die NMR-spektroskopischen Untersuchungen standen die JEOL-Geräte JNM-PMX 60 (60 MHz bei ¹H), FT-JNM-GX 270 und FT-JNM-EX 270 (67.70 bei ¹³C und 109.37 MHz bei ³¹P) zur Verfügung. Die ¹Hund ¹³C-Verschiebungen wurden relativ zu einem internen TMS-Standard ermittelt. Zur Referenzierung der ³¹P-Spektren diente H_3PO_4 als externer Standard. Positive δ -Werte zeigen Tieffeldverschiebungen an.

4.1. $Cp(CO)W(\mu - CO)$, $Ir(PPh_3)$, (2)

Eine Lösung von 1.10 g (1.45 mmol) $Ir(CH_3)(CO)$ -(PPh₃)₂ [8] wurde mit einem Überschuß an Cp(CO)₃-WH (1.1 g, 3.29 mmol) in 20 ml THF 22 h bei Raumtemperatur gerührt. Danach wurde der dabei gebildete Komplex 2 durch Zugabe von 50 ml Hexan als Rohprodukt isoliert, nach Waschen mit Hexan in möglichst wenig THF wiederaufgelöst und erneut mit Hexan gefällt. Ausb.: 0.60 g (38%). Gef.: C, 50.19; H, 3.35. C₄₄H₃₅IrO₃P₂W (1049.78) ber.: C, 50.34; H, 3.36%.

Die Darstellung von $Cp(CO)Mo(\mu-CO)_2Ir(PPh_3)_2$ (1) erfolgte mit 27% Ausbeute auf analogem Wege aus

TABELLE 3. Kristallstrukturdaten

	1	2		
Summenformel	C44H35IrMoO3P2	C ₄₄ H ₃₅ IrO ₃ P ₂ W		
M _r	961.87	1049.78		
Raumgruppe	$P2_1/c$	$P2_1/c$		
a (Å)	18.0057(7) ^a	17.960(1) ^b		
b (Å)	10.4213(5) ^a	10.405(2) ^b		
c (Å)	20.7855(7) ^a	20.808(6) ^b		
β (°)	104.641(3) ^a	104.63(1) ^b		
$V(Å^3)$	3773.6(3)	3762.4(13)		
Moleküle je Zelle	4	4		
Dichte (g cm $^{-3}$)	1.693	1.853		
μ (Mo K α) (cm ⁻¹)	39.6	67.6		
Datensammlung	ω-sca	in		
Streubereich	$6.0^\circ \le 20$	9 ≤ 50°		
Anzahl der Reflexe:				
 gesammelt 	6425	6600		
 symmetrieunabhängig 	6235 ($R_{int} = 0.016$)	6235 ($R_{int} = 0.030$)		
– signifikant ($F_0 > 4\sigma$)	4536	3754		
Korrekturen:	LP- [17] und empirische			
	Absorptionsk	orrekturen [18]		
Lösung [19]	Pattersonsynthese	Direktmethoden		
Verfeinerung [20]	Vollmatrix; anisotrope Temperatur-			
	faktoren bei 1 nur für Ir, Mo, P, O			
	und Carbonyl-C, bei 2 auch für Cp-C; Berücksichtigung der Cp-Rotation von 1 durch isotrope Verfeinerung			
	teilbesetzter Atomlagen (Tab. 4); H-Atome in geometrisch idealisierten			
	Positionen fixiert			
Gewichtung	$w^{-1} = \sigma$	(F_0)		
Reflex/Parameter-Verh.	16.3/1	13.4/1		
<i>R</i> -Werte <i>R</i> , R_g [18]	0.046, 0.030	0.059, 0.040		
Restelektronendichte	max. +1.1	max. + 1.5		
nahe der Schweratome	min. -1.2	mm. -1.9		
$(e Å^{-3})$				

^a Bestimmt mit Hilfe von 77 auf dem Diffraktometer zentrierten Reflexen ($22^{\circ} \le 2\theta \le 30^{\circ}$). ^b Bestimmt mit Hilfe von 36 auf dem Diffraktometer zentrierten Reflexen ($20^{\circ} \le 2\theta \le 28^{\circ}$) [16].

TABELLE 4. Atomkoordinaten (×10⁴) und <u>äquivalente</u> isotrope Temperaturfaktoren $U_{\rm äq}^{a}$ (×10³) von Cp(CO)Mo(μ -CO)₂Ir(PPh₃)₂ (1)

Atom	x	у	Z	U _{äq}	
Ir	2802(1)	- 62(1)	- 1545(1)	20(1)	
Мо	3914(1)	1448(1)	- 990(1)	33(1)	
P(1)	1810(1)	- 1023(2)	- 1216(1)	25(1)	
P(2)	2614(1)	- 734(2)	- 2600(1)	26(1)	
C(1)	2868(5)	1944(8)	- 1555(5)	35(4)	
O(1)	2374(3)	2602(6)	- 1858(4)	60(3)	
C(2)	4019(5)	- 406(9)	- 1161(5)	47(4)	
O(2)	4274(3)	- 1434(7)	- 1200(4)	71(3)	
C(3)	3549(5)	976(10)	-253(5)	49(4)	
O(3)	3419(4)	714(7)	262(4)	79(4)	
C(11)	858(4)	- 1292(8)	- 1786(4)	26(2)	
C(12)	222(5)	- 651(8)	- 1683(5)	42(3)	
C(13)	-512(5)	- 803(9)	-2160(5)	54(3)	
C(14)	- 546(5)	- 1592(9)	- 2690(5)	53(3)	
C(15)	74(5)	- 2239(9)	- 2794(5)	50(3)	
C(16)	798(4)	- 2091(8)	-2326(4)	36(2)	
C(21)	2102(4)	- 2572(8)	- 836(4)	25(2)	
C(22)	1678(5)	- 3705(9)	- 1000(4)	46(3)	
C(23)	1957(5)	- 4880(12)	- 717(5)	61(3)	
C(24)	2648(5)	- 4948(11)	-256(4)	54(3)	
C(25)	3065(5)	-3814(10)	- 70(5)	54(3)	
C(26)	2801(4)	- 2644(9)	- 374(4)	38(2)	
C(31)	1571(4)	-149(8)	- 535(4)	30(2)	
C(32)	1553(5)	1177(9)	- 550(5)	51(3)	
C(33)	1332(5)	1874(11)	- 40(6)	67(3)	
C(34)	1153(6)	1228(12)	469(6)	80(4)	
C(35)	1140(6)	-95(13)	469(6)	87(4)	
C(36)	1352(5)	- 778(10)	- 39(5)	60(3)	
C(41)	2854(4)	- 2399(9)	-2718(4)	35(2)	
C(42)	3031(5)	- 2792(9)	-3309(5)	49(3)	
C(43)	3133(5)	-4126(10)	-3400(5)	63(3)	
C(44)	3048(5)	- 4993(12)	- 2934(5)	67(3)	
C(45)	2885(5)	-4627(11)	-2358(5)	69(3)	
C(46)	2793(4)	-3282(9)	-2240(5)	42(3)	
C(51)	3273(4)	168(10)	-2980(4)	40(2)	
C(52)	4033(5)	- 106(10)	-2784(5)	59(3)	
C(53)	4593(6)	679(11)	-3026(5)	82(4)	
C(54)	4261(6)	1626(11)	-3474(5)	78(4)	
C(55)	3528(7)	1898(12)	- 3658(6)	87(4)	
C(56)	2995(6)	1146(10)	- 3427(5)	67(3)	
C(61)	1693(4)	- 461(8)	-3183(4)	29(2)	
C(62)	1431(5)	- 1229(10)	-3731(5)	52(3)	
C(63)	691(6)	- 985(10)	-4181(5)	65(3)	
C(64)	267(5)	55(11)	- 4062(5)	56(3)	
C(65)	539(5)	828(9)	-3521(5)	50(3)	
C(66)	1247(4)	540(8)	- 3063(4)	38(2)	
C(71) ^b	5146(11)	1738(19)	-1061(14)	51(6)	
C(72) b	5117(12)	2053(22)	- 405(10)	49(6)	
C(73) ^b	4667(14)	3134(24)	- 355(11)	55(7)	
C(74) ^b	4405(11)	3527(20)	-1026(14)	49(6)	
C(75) ^b	4707(14)	2717(24)	- 1443(9)	46(5)	
C(71') ^b	5012(14)	2154(28)	-1302(12)	38(6)	
C(72') b	5238(12)	1817(21)	- 626(16)	31(6)	
C(73') ^b	4882(14)	2695(29)	- 287(10)	31(6)	
C(74') ^b	4416(15)	3541(25)	- 750(17)	54(9)	
C(75') ^b	4493(13)	3185(28)	- 1385(12)	36(6)	

^a Berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors. ^b Fehlgeordnete Cp-Atome mit Besetzungsfaktoren von 0.5626 für C(71)-C(75) und 0.4374 für C(71')-C(75'). 0.50 g (0.66 mmol) $Ir(CH_3)(CO)(PPh_3)_2$ und 0.40 g (1.63 mmol) $CpMo(CO)_3H$ in 20 ml THF. Wegen der schnell ablaufenden Folgereaktion von 1 zu $Cp(CO)_2$ - $Mo(\mu-Ph_2P)Ir(C_6H_5)(CO)_2(PPh_3)$ (3) durfte hier nur

TABELLE 5. Atomkoordinaten (×10⁴) und ä<u>quivalente</u> isotrope Temperaturfaktoren U_{aq}^{a} (×10³) von Cp(CO)W(μ -CO)₂Ir(PPh₃)₂ (2)

Atom	r	v	7	
	A		-	
Ir	2195(1)	-81(1)	1541(1)	19(1)
W	1078(1)	1429(1)	979(1)	29(1)
P(1)	3189(2)	-1033(3)	1216(2)	23(1)
P(2)	2375(2)	- /55(4)	2588(2)	28(2)
C(1)	2123(8)	1922(14)	1537(8)	33(6)
O(1)	2631(6)	2597(9)	1844(6)	53(5)
C(2)	977(9)	-428(16)	1160(8)	36(7)
O(2)	709(6)	- 1492(12)	1194(6)	65(6)
C(3)	1411(8)	1048(15)	241(8)	41(7)
0(3)	1573(7)	736(12)	- 290(6)	72(6)
C(11)	4134(7)	- 1309(14)	1781(7)	28(4)
C(12)	4794(9)	- 690(15)	1696(9)	53(5)
C(13)	5517(9)	- 819(16)	2153(9)	52(5)
C(14)	5565(9)	- 1601(16)	2693(9)	54(5)
C(15)	4920(9)	- 2207(16)	2770(8)	51(5)
C(16)	4195(8)	- 2069(14)	2342(7)	31(4)
C(21)	2898(8)	- 2615(13)	847(7)	24(4)
C(22)	3330(9)	- 3735(16)	1030(8)	50(5)
C(23)	3044(9)	- 4906(19)	728(8)	59(5)
C(24)	2363(8)	- 4945(17)	257(8)	48(5)
C(25)	1928(9)	-3862(16)	70(8)	47(5)
C(26)	2208(8)	- 2682(15)	375(7)	39(4)
C(31)	3428(7)	- 136(14)	542(7)	28(4)
C(32)	3441(8)	1189(15)	543(8)	46(5)
C(33)	3628(9)	1845(18)	30(9)	65(6)
C(34)	3866(10)	1249(19)	- 453(10)	71(6)
C(35)	3852(9)	- 77(20)	- 476(9)	72(6)
C(36)	3633(8)	- 773(16)	33(8)	52(5)
C(41)	2147(8)	- 2430(13)	2727(7)	26(4)
C(42)	1957(8)	- 2844(16)	3304(8)	42(4)
C(43)	1872(9)	-4124(17)	3418(10)	63(6)
C(44)	1964(8)	- 4971(19)	2921(9)	56(5)
C(45)	2131(9)	-4623(18)	2330(9)	65(6)
C(46)	2218(7)	- 3319(15)	2254(8)	37(4)
C(51)	1719(7)	136(15)	2976(7)	30(4)
C(52)	949(9)	- 145(17)	2755(8)	54(5)
C(53)	384(11)	629(19)	3010(10)	84(7)
C(54)	698(12)	1558(20)	3449(10)	80(6)
C(55)	1411(10)	1861(18)	3645(9)	70(6)
C(56)	1966(10)	1151(17)	3417(9)	61(5)
C(61)	3303(8)	-481(14)	3185(8)	32(4)
C(62)	3577(9)	- 1250(16)	3743(8)	50(5)
C(63)	4297(9)	- 979(17)	4159(9)	57(5)
C(64)	4730(9)	62(18)	4064(8)	54(5)
C(65)	4456(9)	825(16)	3508(8)	47(5)
C(66)	3743(8)	573(14)	3075(7)	32(4)
C(71)	198(18)	2826(36)	325(12)	98(14)
C(72)	-215(11)	1890(26)	514(20)	97(16)
C(73)	- 61(16)	1942(37)	1195(20)	106(17)
C(74)	416(15)	2977(34)	1418(16)	96(15)
C(75)	584(12)	3561(22)	874(25)	107(17)

^a Berechnet aus ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

aber kürzere Zeit (30 min bis maximal 4.5 h) gerührt werden. Allerdings enthielten auch die unter diesen Bedingungen isolierten Präparate der Verbindung 1 stets geringe Mengen ihres Abbauproduktes 3.

4.2. $Cp(CO)_2Mo(\mu - Ph_2P)Ir(C_6H_5)(CO)_2(PPh_3)$ (3)

Zur gezielten Darstellung von **3** wurden 0.1 g **1** in 5 ml THF gelöst und 20 h bei Raumtemp. gerührt. Nach Zugabe von 20 ml Hexan wurde filtriert, im Vakuum zur Trockne eingeengt und der orangegelbe Rückstand spektroskopisch als Komplex **3** identifiziert. Alternativ beließ man eine Lösung von 1.80 g (2.37 mmol) Ir-(CH₃)(CO)(PPh₃)₂ und 0.60 g (2.44 mmol) Cp(CO)₃-MoH in 50 ml THF 72 h bei Raumtemp. wobei **3** als oranges THF-Addukt auskristallisierte. Ausb.: 1.43 g (57%). Gef.: C, 55.17; H, 4.42. C₄₅H₃₅IrMoO₄P₂ · C₄H₈O (1061.98) ber.: C, 55.42; H, 4.08%.

4.3. Röntgenstrukturanalysen von 1 und 2

Die kristallographischen Messungen wurden auf einem Vierkreis-Diffraktometer der Firma Huber bei Raumtemperatur unter Verwendung von Mo-K α -Strahlung (Graphit-Monochromator; $\lambda = 0.7107$ Å) durchgeführt. Die verwendeten Einkristalle von 1 und 2 wurden aus THF/Hexan-Mischungen gezüchtet. Gang und Ergebnisse der Strukturbestimmungen sind in den Tabellen 3 bis 5 zusammengestellt. Weitere Einzelheiten können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein/Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57187, der Autoren und des Zeitschriftenzitats angefordert werden.

Dank

Die Arbeit wurde vom Fonds der Chemischen Industrie in dankenswerter Weise unterstützt. Die Firma Degussa förderte durch eine großzügige Edelmetall-Spende. Herrn Prof. Dr. K. Brodersen danken wir für die Bereitstellung von Sach- und Personalmitteln, Herrn Prof. Dr. D. Sellmann für die Ermöglichung der Kernresonanzuntersuchungen.

Literatur

- 1 L. Dahlenburg und C. Prengel, Inorg. Chim. Acta, 122 (1986) 55.
- 2 J.P. Collman, L.S. Hegedus, J.R. Norton und R.G. Finke, Principles and Applications of Organotransition Metal Chemistry, 2nd ed., University Science Books, Mill Valley, CA, 1987, Table 5.1.
- 3 F.A. Cotton und G. Wilkinson, *Advanced Inorganic Chemistry*, 5th ed., Wiley-Interscience, New York, 1988, Table 27-1.
- 4 (a) J.R. Shapley, S.J. Hardwick, D.S. Foose, G.D. Stucky, M.R. Churchill, C. Bueno und J.P. Hutchinson, J. Am. Chem. Soc., 103 (1981) 7383; (b) M.R. Churchill und J.P. Hutchinson, Inorg.

Chem., 20 (1981) 4112; (c) M.R. Churchill, C. Bueno und J.P. Hutchinson, *Inorg. Chem.*, 21 (1982) 1359; (d) M.R. Churchill, Y.-L. Li, J.R. Shapley, D.S. Foose und W.S. Uchiyama, J. Organomet. Chem., 312 (1986) 121.

- 5 (a) C.P. Casey, E.W. Rutter, Jr. und K.J. Haller, J. Am. Chem. Soc., 109 (1987) 6886; (b) C.P. Casey und E.W. Rutter, Jr., J. Am. Chem. Soc., 111 (1989) 8917; (c) C.P. Casey und G.T. Whiteker, Inorg. Chem., 29 (1990) 876; (d) C.P. Casey und E.W. Rutter, Jr., Inorg. Chem., 29 (1990) 2333.
- 6 J.M. McFarland, M.R. Churchill, R.F. See, C.H. Lake und J.D. Atwood, Organometallics, 10 (1991) 3530.
- 7 E.J. Moore, J.M. Sullivan und J.R. Norton, J. Am. Chem. Soc., 108 (1986) 2257.
- 8 (a) L. Dahlenburg und R. Nast, J. Organomet. Chem., 71 (1974) C49; (b) L. Dahlenburg, F. Mirzaei und A. Yardimcioglu, Z. Naturforsch., Teil B, 37 (1982) 310.
- 9 (a) L. Carlton, W.E. Lindsell, K.J. McCullough und P.N. Preston, J. Chem. Soc., Chem. Commun., (1982) 1001; (b) L. Carlton, W.E. Lindsell, K.J. McCullough und P.N. Preston, J. Chem. Soc., Chem. Commun., (1983) 216; (c) L. Carlton, W.E. Lindsell, K.J. McCullough und P.N. Preston, J. Chem. Soc., Dalton Trans., (1984) 1693; (d) L. Carlton, W.E. Lindsell, K.J. McCullough und P.N. Preston, Organometallics, 4 (1985) 1138; (e) L. Carlton, W.E. Lindsell, K.J. McCullough und P.N. Lindsell, J. Chem. Soc., Dalton Trans., (1987) 2741; (f) W.E. Lindsell und P.J. Tomb, J. Organomet. Chem., 378 (1989) 245.

- 10 S.V. Hoskins, A.P. James, J.C. Jeffery und F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1986) 1709.
- 11 E. Halsch, Arbeiten zur Dissertation, Universität Erlangen-Nürnberg, im Fortgang.
- 12 J.C. Jeffery, M.A. Ruiz und F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1988) 1131.
- 13 M.R. Churchill und L.V. Biondi, J. Organomet. Chem., 353 (1988) 73.
- 14 M.R. Churchill und L.V. Biondi, J. Organomet. Chem., 366 (1989) 265.
- 15 P. Hofmann und H.R. Schmidt, Angew. Chem., 98 (1986) 810; Angew. Chem., Int. Ed. Engl., 25 (1986) 837.
- 16 HUB 5.5 Steuer- und Rechenprogramm für Vierkreis-Diffraktometer: M. Gomm, Universität Erlangen, 1991.
- 17 DIRC Programm zur Aufbereitung von Diffraktometer-Rohdaten: A. Wolski, Universität Eerlangen, 1991.
- 18 DIFABS Program for Correcting Diffractometer Data for Absorption Effects: N. Walker und D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.
- 19 SHELXS-86 Program for Crystal Structure Solution: G.M. Sheldrick, Universität Göttingen, 1986.
- 20 SHELX-76 Program for Crystal Structure Determination: G.M. Sheldrick, University of Cambridge, 1976.